skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seligman, Darryl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Assessing the prevalence of atmospheres on rocky planets around M-dwarf stars is a top priority of exoplanet science. High-energy activity from M dwarfs can destroy the atmospheres of these planets, which could explain the lack of atmosphere detections to date. Volcanic outgassing has been proposed as a mechanism to replenish the atmospheres of tidally heated rocky planets. L 98-59 b, a sub-Earth transiting a nearby M dwarf, was recently identified as the most promising exoplanet to detect a volcanic atmosphere. We present the transmission spectrum of L 98-59 b from four transits observed with JWST NIRSpec G395H. Although the airless model provides an adequate fit to the data based on itsχ2, an SO2atmosphere is preferred by 3.6σover a flat line in terms of the Bayesian evidence. Such an atmosphere would likely be in a steady state where volcanism balances escape. If so, L 98-59 b must experience at least eight times as much volcanism and tidal heating per unit mass as Io. If volcanism is driven by runaway melting of the mantle, we predict the existence of a subsurface magma ocean in L 98-59 b extending up toRp ∼  60%–90%. An SO2-rich volcanic atmosphere on L 98-59 b would be indicative of an oxidized mantle with an oxygen fugacity offO2 > IW + 2.7, and it would imply that L 98-59 b must have retained some of its volatile endowment despite its proximity to its star. Our findings suggest that volcanism may revive secondary atmospheres on tidally heated rocky planets around M dwarfs. 
    more » « less
    Free, publicly-accessible full text available February 13, 2026
  2. Abstract Nongravitational accelerations in the absence of observed activity have recently been identified on near-Earth objects (NEOs), opening the question of the prevalence of anisotropic mass loss in the near-Earth environment. Motivated by the necessity of nongravitational accelerations to identify 2010 VL65and 2021 UA12as a single object, we investigate the problem of linking separate apparitions in the presence of nongravitational perturbations. We find that nongravitational accelerations on the order of 1 × 10–9au day−2can lead to a change in plane-of-sky positions of ∼1 × 103arcsec between apparitions. Moreover, we inject synthetic tracklets of hypothetical nongravitationally accelerating NEOs into the Minor Planet Center orbit identification algorithms. We find that at large nongravitational accelerations (∣Ai∣ ≥ 1 × 10−8au day−2) these algorithms fail to link a significant fraction of these tracklets. We further show that if orbits can be determined for both apparitions, the tracklets will be linked regardless of nongravitational accelerations, although they may be linked to multiple objects. In order to aid in the identification and linkage of nongravitationally accelerating objects, we propose and test a new methodology to search for unlinked pairs. When applied to the current census of NEOs, we recover the previously identified case but identify no new linkages. We conclude that current linking algorithms are generally robust to nongravitational accelerations, but objects with large nongravitational accelerations may potentially be missed. While current algorithms are well-positioned for the anticipated increase in the census population from future survey missions, it may be possible to find objects with large nongravitational accelerations hidden in isolated tracklet pairs. 
    more » « less
    Free, publicly-accessible full text available November 22, 2025
  3. Small bodies are capable of delivering essential prerequisites for the development of life, such as volatiles and organics, to the terrestrial planets. For example, empirical evidence suggests that water was delivered to the Earth by hydrated planetesimals from distant regions of the Solar System. Recently, several morphologically inactive near-Earth objects were reported to experience significant nongravitational accelerations inconsistent with radiation-based effects, and possibly explained by volatile-driven outgassing. However, these “dark comets” display no evidence of comae in archival images, which are the defining feature of cometary activity. Here, we report detections of nongravitational accelerations on seven additional objects classified as inactive (doubling the population) that could also be explainable by asymmetric mass loss. A detailed search of archival survey and targeted data rendered no detection of dust activity in any of these objects in individual or stacked images. We calculate dust production limits of 10, 0.1 , and 0.1 kg s 1 for 1998 FR 11 , 2001 ME 1 , and 2003 RM with these data, indicating little or no dust surrounding the objects during the observations. This set of dark comets reveals the delineation between two distinct populations: larger, “outer” dark comets on eccentric orbits that are end members of a continuum in activity level of comets, and smaller, “inner” dark comets on near-circular orbits that could signify a different different population. These objects may trace various stages in the life cycle of a previously undetected, but potentially numerous, volatile-rich population that may have provided essential material to the Earth. 
    more » « less
    Free, publicly-accessible full text available December 17, 2025
  4. Abstract Stellar flares are short-duration (< hours) bursts of radiation associated with surface magnetic reconnection events. Stellar magnetic activity generally decreases as a function of both the age and Rossby number,R0, a measure of the relative importance of the convective and rotational dynamos. Young stars (<300 Myr) have typically been overlooked in population-level flare studies due to challenges with flare-detection methods. Here, we select a sample of stars that are members of 26 nearby moving groups, clusters, or associations with ages <300 Myr that have been observed by the Transiting Exoplanet Survey Satellite at 2 minute cadence. We identified 26,355 flares originating from 3160 stars and robustly measured the rotation periods of 1847 stars. We measure and find the flare frequency distribution slope,α, saturates for all spectral types atα∼ −0.5 and is constant over 300 Myr. Additionally, we find that flare rates for starstage= 50–250 Myr are saturated belowR0< 0.14, which is consistent with other indicators of magnetic activity. We find evidence of annual flare rate variability in eleven stars, potentially correlated with long-term stellar activity cycles. Additionally, we crossmatch our entire sample with the Galaxy Evolution Explorer and find no correlation between flare rate and far- and near-ultraviolet flux. Finally, we find the flare rates of planet-hosting stars are relatively lower than comparable, larger samples of stars, which may have ramifications for the atmospheric evolution of short-period exoplanets. 
    more » « less
  5. Abstract We report initial observations aimed at the characterization of a third interstellar object. This object, 3I/ATLAS or C/2025 N1 (ATLAS), was discovered on 2025 July 1 UT and has an orbital eccentricity ofe ∼ 6.1, perihelion ofq ∼ 1.36 au, inclination of ∼175°, and hyperbolic velocity ofV ∼ 58 km s−1. We report deep stacked images obtained using the Canada–France–Hawaii Telescope and the Very Large Telescope that resolve a compact coma. Using images obtained from several smaller ground-based telescopes, we find minimal light-curve variation for the object over a ∼4 day time span. The visible/near-infrared spectral slope of the object is 17.1% ± 0.2%/100 nm, comparable to other interstellar objects and primitive solar system small bodies (comets and D-type asteroids). Moreover, 3I/ATLAS will be observable through early 2025 September, then unobservable by Earth-based observatories near perihelion due to low solar elongation. It will be observable again from the ground in late 2025 November. Although this limitation unfortunately prohibits detailed Earth-based observations at perihelion when the activity of 3I/ATLAS is likely to peak, spacecraft at Mars could be used to make valuable observations at this time. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  6. Abstract The discovery of two interstellar objects passing through the solar system, 1I/‘Oumuamua and 2I/Borisov, implies that a galactic population exists with a spatial number density of order ∼0.1 au−3. The forthcoming Rubin Observatory Legacy Survey of Space and Time (LSST) has been predicted to detect more asteroidal interstellar objects like 1I/‘Oumuamua. We apply recently developed methods to simulate a suite of galactic populations of interstellar objects with a range of assumed kinematics, albedos, and size–frequency distributions (SFDs). We incorporate these populations into the objectsInField algorithm, which simulates detections of moving objects by an arbitrary survey. We find that the LSST should detect between ∼0 and 70 asteroidal interstellar objects every year (assuming the implied number density), with sensitive dependence on the SFD slope and characteristic albedo of the host population. The apparent rate of motion on the sky—along with the associated trailing loss—appears to be the largest barrier to detecting interstellar objects. Specifically, a relatively large number of synthetic objects would be detectable by the LSST if not for their rapid sky motion (>0.°5 day−1). Therefore, algorithms that could successfully link and detect rapidly moving objects would significantly increase the number of interstellar object discoveries with the LSST (and in general). The mean diameter of detectable, inactive interstellar objects ranges from ∼50 to 600 m and depends sensitively on the SFD slope and albedo. 
    more » « less
  7. Interstellar interlopers are bodies formed outside of the Solar System but observed passing through it. The first two identified interlopers, 1I/‘Oumuamua and 2I/Borisov, exhibited unexpectedly different physical properties. 1I/‘Oumuamua appeared unresolved and asteroid-like, whereas 2I/Borisov was a more comet-like source of both gas and dust. Both objects moved under the action of nongravitational acceleration. These interlopers and their divergent properties provide our only window so far onto an enormous and previously unknown galactic population. The number density of such objects is ∼0.1 AU−3which, if uniform across the galactic disk, would imply 1025to 1026similar objects in the Milky Way. The interlopers likely formed in, and were ejected from, the protoplanetary disks of young stars. However, we currently possess too little data to firmly reject other explanations. ▪ 1I/‘Oumuamua and 2I/Borisov are both gravitationally unbound, subkilometer bodies showing nongravitational acceleration. ▪ The acceleration of 1I/‘Oumuamua in the absence of measurable mass loss requires either a strained explanation in terms of recoil from sublimating supervolatiles or the action of radiation pressure on a nucleus with an ultralow mass column density, ∼1 kg m−2. ▪ 2I/Borisov is a strong source of CO and H2O, which together account for its activity and nongravitational acceleration. ▪ The interlopers are most likely planetesimals from the protoplanetary disks of other stars, ejected by gravitational scattering from planets. 1I/‘Oumuamua and 2I/Borisov have dynamical ages ∼108and ∼109years, respectively. ▪ Forthcoming observatories should detect interstellar interlopers every year, which will provide a rapid boost to our knowledge of the population. 
    more » « less